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Introduction

“Space weather” refers to conditions on the sun and in the solar wind, magnetosphere,
ionosphere, and thermosphere that can influence the performance and reliability of
space-borne and ground-based technological system and can endanger human life or
health. Adverse conditions in the space environment can cause disruption of satellite
operations, communications, navigation, and electric power distribution grids, leading to
a variety of socioeconomic losses.

National Space Weather Plan, Strategic Plan, 1995

Overview
* Space radiation environments important to magnetospheric missions
— Trapped radiation
— Solar particle events
— Cosmic Rays
— Solar wind
* Radiation effects on space systems
e Spacecraft charging



Charged Particle Effects on Space Systems

* Spacecraft operate in a harsh space environment

— Sensitive electrical, optical components, materials are continually subjected to
energy and charge depositing interactions

* Devices in space are believed to have failed because of:
— Electrostatic discharge
— Receiving a total dose (energy/mass) exceeding acceptable limits
— Random cosmic ray strike at a sensitive location
— Displacement damage caused by particle non-ionizing energy loss

* Magnitude of radiation effects issues depend on mission specific exposure
environments:
* Particle flux
* Particle fluence (exposure duration)
* Spatial variations in environment
» Temporal variations in environment
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Spacecraft Charging
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Magnetosphere
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Radiation Trapping in Magnetic Field

Basic Components of Particle Motion: bounce, gyration and drift
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AP-8/AE-8 Trapped Radiation Models

i In geographical coordinate T REGhLA
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South Atlantic Anomaly

*Magnetic dipole field is

—tilted ~11° from Earth’s rotation axis

—shifted by ~400 km from center of the Earth
*Combined effect of tilt and offset moves region of
strong field towards Earth on one side of Earth and
away on the other

*Weak field region 1s the South Atlantic Anomaly

Low Earth orbit spacecraft exposed
to enhanced flux in SAA




South Atlantic Anomaly — Altitude Variation

Protons in SAA - 800 ki Proton flux contours at 800 km
! ' define an oval SAA region
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Outer Electron Belt Solar Cycle Variation
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Electron Flux Variability

Enargetic electrons during the CRRES mission

* Combined Radiation and Release
Experiment Satellite (CRRES)

— 350 km x 33584 km x 18.1°
— July 1990 — Oct 1991

L Parameter (R

* Integrated integral electron flux
mission summary

— Electron flux most variable in
outer radiation belts

L Parameter (Rg)

— Formation of an inner
radiation belt following a
geomagnetic storm in
March,1991.
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Radiation Belt Enhancements, Depletions

Polar 1.7 Rex9 Re x90°
Polar 1.2-2.4 MeV flux, 1997
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Flares, CME’s

* Impulsive events
— Minutes to hours
— Electron rich

— ~1000/yr at solar max =]
"
* Gradual events
— Days
— Proton rich
— ~100/year
______________ avionics
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CME Simulation
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How Large do Solar Particle Events Get?

=30 MaV SOLAR PROTOM EVENTS
e SPE events with >30 MeV fluence exceeding ONNICIRECTIONAL EVENT FLUBNCE

10° p/cm2 are major hazards and occur a few nr =i == =t = =
times per solar cycle 1ok j
EE_ j )
e NOx proxy for >30 MeV proton fluence F
Bl

provides extreme event history over multiple
solar cycles for period ~400 years

=

LOGia FLUENECE (cm®)

e Ice core data shows 1859 Carrington event to F
be the largest in ~400 years 5.1

— 4x October 1989 event

1880
YEAR

— Carrington event is also consistent with g
Emission of Solar Proton (ESP) model b
worst case event 9
& 1010 -
e Long time series of historical records and ice & R
core proxy have been important in 5 ]
establishing extreme levels for solar proton 5 4 ]
events ‘; ol k
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Streaming Limits
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Galactic Cosmic Rays

Charged particles ejected in supernovae explosions
— Accelerated in galactic magnetic fields to very high energies
Protons, heavy ions, electrons
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Galactic Cosmic Ray Spectra
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GCR, SEP Solar Cycle Variation
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Current Cosmic Ray Flux
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Environments
Radiation Effects

Spacecraft Charging
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Radiation Effects

* Total lonizing Dose (TID) and Displacement Damage Dose (DDD)
— Performance degradation of electronics, materials due to the cumulative
exposure to ionizing radiation

— Observed effects range from increased power consumption to parametric
failure to complete failure of components to successfully function

* Single Event Effects (SEE)

— Effect generated by charge deposition during passage of a single particle
through a sensitive region of an electronic device

» Effects range from transient currents which simply change state in bipolar devices and change
of state in dynamic memory to catastrophic failure of components due to high currents

— The types of effects are almost as numerous are there are device types

— They range from Upsets (SEU) to Transients (SET, both analog and digital) to
Functional Interrupts (SEFI) for non-destructive effects

— They range from Latchup (SEL) to Burnout (SEB) to Gate Rupture (SEGR) for
destructive effects

— Transient noise in CCD imagers




Star-Mapper Radiation Background
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CCD Radiation Response

MISR instrument CCD response from the EOS - Terra spacecraft before
cover was opened

(Image courtesy MISR Science team
from http://eosweb.larc.nasa.gov/HPDOCS/misr/misr_html/darkmap.html)
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CCD Noise
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Solar Particle Event (“Flare”) Environments

CHNO - 24 Hour Averaged Mean Exposure Flux
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Single Event Effects (SEE)

Single event effects (SEE) occur when charge deposited by an ion

passing through the sensitive volume of a biased electronic device is Each particle
of sufficient magnitude to change the operating state of the device. produces an
fonization track

Example SEE types include:

¢ Single event voltage transient (SET): self correcting but could cause
system malfunction if propagated as a signal

¢ Single event upset (SEU): operating state change (e.g. memory bit
upset)-errors in data and executable output if uncorrected

¢ Single event latchup (SEL): operation ceases-effect may be
correctible by power cycling or part may be destroyed

¢ Single event burnout (SEB): part is destroyed by over-current

Single Event Effects Caused by Heavy lons (Z=2-92)
* High linear energy transfer (LET) rate of heavy ions produces ionization along track as ion slows
down
¢ Dense ionization track over a short range produces sufficient charge in sensitive volume to cause SEE
--SEE is caused directly by ionization produced by incident heavy ion particles
¢ Small contribution to SEE rates from secondary particles produced in inelastic collisions (small
cross section for nuclear interactions and small flux of incident energetic particles)

Georgia Tech., School of Aerospace Engineering 7 October 2009 28



Proton Induced SEE Events

* Protons cause SEE through secondary particles produced in Most prolons pass
inelastic collisions with nuclei of atoms (usually silicon) inside through the device
electronics. Energy is transferred to a target atom fragment or with little effect
recoil ion with high linear energy transfer (LET) and charge A few protons cause
deposited by recoil ion(s) is the direct cause of SEE. nuclear reacn‘m;s-h

¢ LET spectra of recoil ions is a function of proton energy.
Maximum LET from 200 MeV protons is ~¥12 MeV-cm2/mg. A

small fraction of protons are converted to such secondary particles Short-range [
: 4 : 5 recoil produces |
(1in 10%*to 1in 10°). lonization |
L4

Protons also lose energy through multiple elastic collisions with atoms encountered during passage
through material:
¢ A very diffuse track of ionized atoms is produced. The low charge density in a device sensitive volume
is unlikely to affect operation. LET of protons is far less than 1 MeV-cm?/mg.
e Charge density deposited by protons within the sensitive volume of most electronic devices is too
small to influence the device operating state and induce SEE
¢ As devices move to lower operating voltages and smaller feature sizes (some now have gate lengths of
~0.1micron) less electrical charge is required to cause a SEE:

-- Direct SEE from protons is possible in very sensitive (soft) parts and has been observed in some high
speed optocouplers and Charge Coupled Devices (CCDs)

Georgia Tech., School of Aerospace Engineering 7 October 2009



Solar Wind as Radiation Environment

e Solar wind is generally considered a benign radiation environment
— Solar wind velocity ~400 km/sec to 800 km/sec, mean ~450 km/sec
* Kineticenergy of H* ~0.21 keV to 3.3 keV, mean 1.1 keV
* Kinetic energy of He** ~ 0.84 keV to 13 keV, mean 4.2 keV
—  H*flux~ NV ~ (7 H*/cm3)(450 x103 m/s) ~ 3.2x108 H*/cm?2-sec
— He**/H*~0.038 He** flux ~ 0.12x108 H*/cm?2-sec

TRIM Analyses

— Fluence H, He on Al H, He on polyimide

e H*~9.9x10%5 H*/cm?2-year
* He**~ 3.8x10 H*/cm?-year

Depth vs. Y-Axis

» Solar wind penetration depths are
only fractions of a micron
— Bulk materials impacted only on
“surfaces”
— 1000 A (0.1 um) coating is

impacted throughout the material ¥

- Target Depth - 1500 A

~ ~102 MGylyr dose rates within the ' : : : : T
thin 0.1 um coating 10,000 1.22 keV H*
— Important for optical (and therefore 10,000 5.27 keV He**

thermal) properties of materials
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Material Surfaces Modified by Space Environment

» Surface properties of materials degrade

— Changes in optical properties are impori
to solar wind for long periods

— Not just charged particles...UV, out gassi
Temp(t) ~ sin(2nt + @)exp(-t/t)

Advanced Composition Explorer (ACE)
Sun-Earth L1

| emperature {7c)

| [Haggerty et al., 2006]
1998 1999 2000 2001 2002 2003 2004
Year
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Surface Charging

Time dependent current balance on surfaces

d dv
Q_c = :Zk:Ik ( ~ 0 at equilibrium)

i (i) e
& hl)
Zlk = péJOW e-(lo

k photon ©
. e#(bs),
+ 1.(V) incident ions g)ph s (feC) -(sec)
- 1.(V) incident electrons
+ s (V) backscattered electrons O o O
+ 1. (V) secondary electrons : ,
due to I, s
+1,4(V) secondary electrons Kapton e o 5 /@ Q
due to |, »
+ 1 e(V) photoelectrons
+1.(V) conduction currents \q
+ 15(V) active current sources e-(sec) e-(bs), Q
(beams, electric thrusters, etc.) @ QO elsec) O e-(low)
p+(hi) e-(hi)
dVv Garrett and Minow, 2004
S-S 407 ‘ ’
dt =
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Bulk (Deep Dielectric) Charging

Radiation charging of insulators, isolated conductors

V.D:p
D =¢E
8=K80

P _ vy
ot
J=JO+JC
J = oE

= (G dark T ©radiation )E

dy @
Gradiation = k(d_t) 05<ax<l1.0
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plasma
pg') e=(hi)
pélow e-(lo
photon @

. e#(bs),
Qph s (EBC) -(sec)
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e-(sec) e-(bs), ©

- -(low)
o ¢ (sec) (5 "
p+(h(3i)) e-l:hl)
(Garrett and Minow, 2004)
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Spacecraft Charging Effects

Differential charging of dielectrics,
ungrounded conducting materials in
space plasma and radiation
environments generates electric
fields

Fields exceeding material breakdowr
strength result in electrostatic
discharge

Risks include:

ESD generated radio noise exceeding
EMC/EMI requirements

Current pulses couple into sensitive
electronics generating phantom
commands, upsets, or destruction of
critical components

Material degradation
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Low Earth Orbit (<1000 km)

* Current collection on surfaces in
ionosphere charge vehicle few
volts negative relative to plasma

* LEO charging dominated by solar
array current collection

— Potentials relative to plasma depend
on solar array design

— Bare interconnects with vehicle
grounded on negative end of array
can drive vehicle potential to
voltages as much as ~90% of array
bias

* Potential difference across
vehicle generated by motion in
geomagnetic field:

AD ~ (VxB)eL ~ 0.37 V/m in LEO

For example, consider ISS
AD ~ (7.7km/sec * 46,200 nT) (108 m)
~ 40 volts
51.6 N, 240 E, 348 km

Den (1x10"' m™)

FP (-V)
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_
=
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GMT Hour

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

[Craven et al., 2009]
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“lon Line” Charging Signature

ATS-6
UCSD DETECTOR
AUGUST b, 1974

ATS-6, geostationary orbit
— Spacecraft charged to potential ® <0

B80. 4

10

* Primary electrons, E’=E,-q®

— Only electrons with energy E, > |- 1.0
e® | can impact spacecraft surface

* Photoelectrons, locally generated
secondary electrons returned to
spacecraft by electrostatic barrier
generated by differential charging of
insulators near the particle detector

ELECTRONS

0.01

ENERGY|(keV)

80. 4

10.

ion,
electro
n flux

IONS

* |ons attracted to @ < 0 spacecraft
and impact with energy E=E +e®

— Ey,=0ions impact with minimum 0.1
energy E=e®

* Secondary, locally generated ions

10 11 12 13 14 UT

DAY 217
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Spacecraft Charging Impacts Space Systems

Space Environment Impacts on Space Systems
(Koons et al., 2000)

Anomaly Diagnosis Number %

ESD-Internal, Surface 162 54.1

Risks to Spacecraft
Phantom commands
Discharge currents damage materials, electronics
systems
Damage to thermal control coatings, solar cells
Trigger arcs on power systems lead to sustained arcing

and uncatergorized
SEU (GCR, SPE, SAA, etc.) 85 28.4

Radiation Dose 16 5.4

Micrometeoroids, orbital 10 3.3
debris

Atomic oxygen 1 0.3

Atmospheric drag 1 0.3

Other 24 8.0

Total 299 100.0%

P ——

Ilmm

) Kﬂwakit etal, 2005
Georgia Tech., School of Aerospace Engineering 7 October 2009

Kawakita et al., 2005
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Spacecraft Charging Impacts Space Systems

Risks to Spacecraft
Phantom commands
Discharge currents damage materials, electronics
systems
Damage to thermal control coatings, solar cells
Trigger arcs on power systems lead to sustained arcing

Space Environment Impacts on Space Systems
(Koons et al., 2000)

Anomaly Diagnosis Number %

ESD-Internal, Surface 162 54.1
and uncatergorized

SEU (GCR, SPE, SAA, etc.) 85 28.4

Radiation Dose 16 5.4

Micrometeoroids, orbital 10 3.3
debris

Atomic oxygen 1 0.3

Atmospheric drag 1 0.3

Other 24 8.0

Total 299 100.0%

Imm |

—A\

) Kﬂwakit etal, 2005
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Spacecraft Charging Impacts Space Systems

Space Environment Impacts on Space Systems
(Koons et al., 2000)

Risks to Spacecraft

Phantom commands

Anomaly Diagnosl

ESD-Internal, Sur
and uncater
SEU (GCR, SPE, S
Radiation Dose
Micrometeoroids
debris
Atomic oxygen
Atmospheric drag
Other

Total

Spacecraft Lost and Missions Terminated

Due to Charging

“prials, electronics

hgs, solar cells
pad to sustained arcing

Spacecraft Date Cause
DSCS I Jun 1973 Surface ESD
GOES 4 Nov 1982 Surface ESD
Feng Yun 1 Jun 1988 ESD
MARECS A Mar 1991 Surface ESD
Anik E2 Jan 1994 ESD?
Telstar 401 Jan 1997 ESD?

INSAT 2D Oct 1997 Surface ESD
ADEOS-II Oct 2003 ESD

[from Koons et al., 2000]

wakita et al., 2005

K
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GEO Surface Charging

Magnetospheric Specification Model
& Spacecraft Charging

Electrons

17.5 KeV

ing the early phase of ™

Ne ic substorm
jected

National .z
Geophysical {W\F Rice
Data Center "S85 University DCW 24

Surface charging anomalies typically occur in
midnight to dawn local time sector where
hot electrons are injected during
geomagnetic substorms
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Threshold for Charging Onset

Electron energy threshold
for onset of charging is |
due to second crossover : |
point of secondary 3
electron yield curves : ot
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Examples of T_.. Onset
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Auroral Charging
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CRRES Internal Discharge Monitor (IDM)

e ESD pulses are
correlated with
high energy
electron flux

* Sum of pulses in all
IDM samples
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Summary

* Geostationary transfer orbit (LEO to ~GEO) is a particularly challenging
environment

e Careful attention to radiation and charging environments is required to
design system to successfully operate long term in GTO environments

* Example GTO, near GTO missions:
— Combined Radiation and Release Experiment Satellite =~ 350 km x 33584 km x 18.1 deg
— THEMIS suite of 5 satellites inclination 4.5 to 7 deg
* Probe 1: 1.3 x30Re x
* Probe2:1.2x20Re
* Probes3and4:1.5x12Re
* Probe5:1.5x10Re
— POLAR ™~1.8x9 Re x 86 deg
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